

NETL Modular Framework for Design & Optimization of Carbon Capture Systems

David C. Miller, Ph.D.

Computational Science Division

Office of Research and Development

2010 NETL CO₂ Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA **15 September 2010**

Outline

- Motivation CO₂ and Water
- Modular Framework Design & Optimization
- Model details
 - PC Plant
 - MEA system
 - Compression system
- Results & Discussion
 - Power generation
 - Capital cost
 - Water use
- CCSI Accelerating Process Scale Up

DOE/NETL Goals: CO₂ Capture

Minimum CO₂ Captured

Maximum Increase in COE

90%

30% for PC

10% for IGCC

DOE/NETL Goals: Freshwater Minimization

- Short-term goals (ready for commercial demonstration by 2015)
 - Reduce freshwater withdrawal and consumption by > 50% for thermoelectric power plants equipped with wet recirculating cooling technology
 - Levelized cost savings > 25% compared to state-of-the-art dry cooling
- Long-term goals (ready for commercial demonstration by 2020)
 - Reduce freshwater withdrawal and consumption by > 70% for thermoelectric power plants equipped with wet recirculating cooling technology
 - Levelized cost savings > 50% compared to state-of-the-art dry cooling

Challenges

- Large-scale problem
 - 2 billion tons CO₂ from coal by 2020 in US
 - Flue gas: 5 million lb/hr for 550MW PC plant
- No existing economical solution
- No framework for developing & evaluating optimized designs
- Difficulty re-using existing models/simulations
- Inconsistent assumptions & evaluation methods
- Approach
 - Process synthesis, design & optimization
 - Process integration
 - Nonlinear interactions across units/subsystems
 - Simulation-based optimization
 - Multi-criteria decision-making tools
 - Include water resource considerations

Modular Framework for Design & Optimization

Derivative-Free Optimization Algorithms Algebraic
Optimization
Codes
GAMS/BARON

Library of Derived Algebraic Models

Development of Surrogate Models from Simulations

Superstructure Development

Process Synthesis HEN

1

Existing Plants

Modules

Combustion system

Feed water heater

Boiler

• FGD

Economizer

Superheater

Condensers

• Steam turbines

Post-Combustion Carbon Capture Modules

- Amine systems
- Chemical looping
- Solid sorbents
- Adsorption
- Oxycombustion
- Membranes
- Absorption (other)
- Ionic liquids
- Compression

IGCC Modules

- Feed system
- Gasifier
- Boiler
- Gas cleanup
- Shift reactor
- Gas turbine
- HRSG
- Steam turbines
- Condensers

Pre-Combustion Carbon Capture Modules

- Physical absorption systems
- Chemical looping
- Solid sorbents
- Adsorption
- Membranes
- Ionic liquids
- Compression

Plantwide Water Simulator

- Cooling alternatives
- High fidelity cooling tower models
- Nontraditional water sources
- Water recovery
- Water treatment
- Cooling water & process water

Subcritical PC Plant

MEA Module

Compression

- 5 stage compression
- Intercoolers 265 F to variable T
- Water returned to process
- Final pressure 2200 psia

Simulation Interface

- Set simulation variables
- Supports structural changes
 - Feed stage
 - Number of stages
 - (not supported internally)
- Retrieves results
- Perform post-processing
 - Cost estimation
 - Objective function calculations

Modular Framework for Design and Optimization

1 × 9	liset Fage i	====				Develope onal Formatti			A T
Paste	H- 3- A-	(R (R 4)			ing the she		Elron		ort & Find &
Cleboute O			The Part			Stores	Of		Mire seens
181	+ 62	Se .							
A		c	D	_	F	F	G	16	
1	Title: PC Plant				E	F	- 0	n.	
2	Authors: John		se case						
3	Revision Date: January 29, 2010								
4	Description: Ti			V cover no	ant asses si	mulation			
5									
6									
7	steam	1677980	lb/hr	main	team flow	ate			
8	coal	433770	lb/hr	coal feed rate					
9	Hoomb		Rtu/lb	heat of combustion of coal (dry)					
30	ay	4597967	Ib/hr		or feed rate				
11						•			
12			E		-				
13				X (-	_			
14			_	~ ~	ノ				
15									
26	T_comb_ptt	3431.5						ream COMB-I	
17	T_comb_p85	499.5						ream COMB-F	
3.5	T_comb_p06	547.2					products in st	ream COMB-P	406
19	T_fwater	480.8			erature of fe				
20	T_htair	266.9	F	tempe	trature of h	eated feed	air		
21									
22									
23									
24	Qreheat	6.97848+00			ter heat tran				
25	Qsuper	1.4465E+09			heater heat				
26	Qdrum	2.3318E+09			generator t		н		
27 28	Qecon	2.5087E+06	BELLYTY	econo	mizer heat	transfer			
28									
30									
31	power	-784467.5	-	alasta	ical power o				
				elecol					
	v3_Sheet5_She	eto sheeti	100			-	Tel 19 7	100% (-)	
Ready 🔄							grad (LB to)	AWA (

Power Plant Module

CO₂ Capture Module

Compression Module

Capital Cost vs. Water Use

Capital Cost vs. NUHR

NUHR vs. Water Use

	Best Net Unit Heat Rate	Best Capital Cost	Best Water Use					
NUHR (Btu/kWh)	14,145	14,392	14,157					
Capital Cost (\$/kW _{net})	1,186	988	1,188					
Overall Net Power Output (MW)	354.7	348.6	354.4					
Total Capital Cost (Capture & Compression only)	\$421 MM	\$345 MM	\$421 MM					
Solvent Flow rate (gpm)	7,070	7,470	6,970					
Lean Solvent Loading (mol CO ₂ /mol amine)	0.214	0.218	0.212					
Rich Solvent Loading (mol CO ₂ /mol amine)	0.454	0.444	0.454					
No. Absorber Stages	20	10	20					
No. Stripper Stages	14	12	14					
Cooling Water Evaporation (lb/MWh _{net})	5,280	5,507	5,247					
NATIONAL ENERGY TECHNOLOGY LABORATORY								

Optimized Process Systems

- Large potential improvement over initial design
- Essential for comparing technology
- Many non-intuitive interactions
- Understand competing objectives

Carbon Capture Simulation Initiative

Identify promising concepts and designs

Develop optimal designs

Quantify technical risk in scale up

Accelerate learning during development & deployment

Modular Framework Research Team

- Optimization and computational infrastructure
 - ModeFrontier integration & multi-criteria, simulation-based optimization NETL (Miller/Eslick)
 - Derivative-free "Blackbox" Optimization CMU (Sahinidis/Cozad)
 - Surrogate model development CMU (Sahinidis/Chang)
 - Simultaneous Superstructure-based Optimization CMU (Grossmann/Yang)
 - Synthesis of Integrated IGCC Systems CMU (Grossmann/Biegler/Kamath)
- Module development
 - Base plant modules
 - Predictive Plant Models (PC/IGCC) NETL (Miller/Eslick)
 - Development of Predictive Turbine Models NETL (Liese)
 - Oxycombustion Plant Model NETL Albany (Summers/Oryshchyn/Harendra)
 - Carbon capture modules
 - Equilibrium & rate-based amine capture NETL (Miller/Eslick)
 - Solid sorbent capture systems NETL (Miller/Lee)
 - Membrane-based separation systems NETL (Miller/Morinelly)
 - Compression system NETL (Miller/Eslick)
 - Synthesis of Optimal PSA Cycles for CO2 Capture from Flue Gas CMU (Biegler/Agarwal)
 - Synthesis of Optimal PSA Cycles for Hydrogen/CO2 Separation CMU (Biegler/Vetukuri)
 - Cryogenic separation and hydrate-based separation NETL (van Osdol)
 - Water-specific activities
 - Treated Municipal Wastewater for Power Plant Cooling CMU (Dzombak/Hsieh)
 - Modeling Nontraditional Sources of Power Plant Water
 - IIT (Abbasian/Arastoopour/Walker/Safari/Strumendo)
 - Water from Oxycombustion NETL Albany (Summers/Oryshchyn/Harendra)